Significant Figures

1. Why are significant figures important?

Significant figures indicate the degree of certainty that a value has. Your measurements and calculations can only be as precise as the least precise instrument. More digits carried does not mean a more correct answer, if you are using more digits than the instrument used accounts for.
2. How many significant figures are in the following numbers
a. 30,100-Three

Only the 301 - the zeroes following the 1 are place holders
b. 30,000. - Five

All of the digits are significant as indicated by the decimal following the final zero.
c. $50,000-$ One

Only the 5 is significant as there is no decimal. The rest of the zeroes are place holders.
d. $0.00030-$ Two

Everything after the first non-zero integer in a decimal is significant.
e. 2.54 exactly - Infinite

There is no uncertainty in an exact number.
f. 5.82×10^{3} - Three

In scientific notation, the number preceding the $\times 10$ contains all the significant figures.

3. Rules for carrying over significant figures

a. Addition/Subtraction

Based on number that has fewest decimal places.
i. How many significant figures would the answer have for $5.42+13.159=18.579$

As 5.42 is only certain to the hundredths rather than thousandths the answer must be reported as 18.58
b. Multiplication/Division

Based on the value that has the smallest number of digits.
i. How many significant figures would the answer have for $(53298) \times(432)=23024736$

As 432 has only 3 sig figs the answer must be reported as:
2.30×10^{7} or $230 . \times 10^{5}$
4. What is dimensional analysis?

Conversion from one set of units to another.
5. Perform the following calculation
a. $32 \mathrm{~cm}^{3}=$ \qquad L

$$
32 \mathrm{~cm}^{2} \frac{\mathrm{~mL}}{\mathrm{~cm}^{2}} \frac{L}{1000 \mathrm{~mL}}=0.032 L
$$

b. 100.0 yards $=$ \qquad cm

$$
100.0 \text { yarets } \frac{3 f^{\prime}}{\text { yerdt }} \frac{12 \mathrm{inch}}{f^{\prime}} \frac{2.54 \mathrm{~cm}}{- \text { inch }^{-}}=9144 \mathrm{~cm}
$$

all conversions used were exact, so none of them limit the number of digits the answer must have.
c. $5 \mathrm{~m}^{3}=$ \qquad cm^{3}

$$
5 \mathrm{~m}^{3} \frac{(100)^{3} \mathrm{~cm}^{3}}{-m^{3-}}=5,000,000 \mathrm{~cm}^{3}
$$

d. 455 seconds $=$ \qquad minutes

$$
455 \text { seconds } \frac{1 \text { minute }}{60 \text { seconds }}=7.58 \text { minutes }
$$

e. $25.6^{\circ} \mathrm{C}=$ \qquad

$$
25.6^{\circ} \mathrm{C}+273.15=298.7 \mathrm{~K}
$$

